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Abstract

Non-exemplar class Incremental Learning (NECIL) enables
models to continuously acquire new classes without retrain-
ing from scratch and storing old task exemplars, addressing
privacy and storage issues. However, the absence of data from
earlier tasks exacerbates the challenge of catastrophic for-
getting in NECIL. In this paper, we propose a novel frame-
work called Dynamic Integration of task-specific Adapters
(DIA), which comprises two key components: Task-Specific
Adapter Integration (TSAI) and Patch-Level Model Align-
ment. TSAI boosts compositionality through a patch-level
adapter integration strategy, which provides a more flexible
compositional solution while maintaining low computation
costs. Patch-Level Model Alignment maintains feature con-
sistency and accurate decision boundaries via two special-
ized mechanisms: Patch-Level Distillation Loss (PDL) and
Patch-Level Feature Reconstruction method (PFR). Specif-
ically, the PDL preserves feature-level consistency between
successive models by implementing a distillation loss based
on the contributions of patch tokens to new class learning.
The PFR facilitates accurate classifier alignment by recon-
structing old class features from previous tasks that adapt to
new task knowledge. Extensive experiments validate the ef-
fectiveness of our DIA, revealing significant improvements
on benchmark datasets in the NECIL setting, maintaining an
optimal balance between computational complexity and ac-
curacy. The full code implementation will be made pub-
licly available upon the publication of this paper.

Introduction
Class Incremental Learning (CIL) has gained increasing at-
tention within the expansive field of artificial intelligence re-
search (Li et al. 2024b; Zhu et al. 2021b; Wang et al. 2022c;
Kurniawan et al. 2024; Li et al. 2024a; Wang et al. 2023a;
Bonato et al. 2024; Zhai et al. 2024a), offering the poten-
tial for models to continuously learn new knowledge while
maintaining the knowledge of previously encountered old
classes. Replay-based CIL approaches (Zhu et al. 2021b; Li
and Hoiem 2018a; Wang et al. 2022a; Zhou et al. 2023;
Rebuffi et al. 2017; Yan, Xie, and He 2021) require the
storage of exemplars from previous tasks, which presents
challenges in terms of memory limitations and privacy con-
cerns. Benefiting from the advances in Pre-Trained Models
(PTMs) (Dosovitskiy et al. 2020), Non-Exemplar Class In-
cremental Learning (NECIL) has become a promising alter-
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(a). Task interference

(c). Distribution Shift:

Figure 1: (a). Shared parameter space leads to task interfer-
ence. (b). High computation costs characterize current PET-
based methods. (c). Gaussian-based feature reconstruction
may have a significant deviation from the actual feature dis-
tribution. ci indicates the actual feature distribution of old
classes, ĉi indicates the feature distribution generated by
Gaussian Sampling.

native, enabling the incremental acquisition of knowledge
without the need to maintain a buffer of old class exemplars.

Despite the inherent ability of PTMs to produce gener-
alizable features, which has led to superior performance in
the NECIL setting, NECIL remains challenging due to two
primary factors. First, As shown in Fig.1 (a), some stud-
ies (Gao et al. 2023; Zhang et al. 2023; Zhou et al. 2024a)
that tune a shared parameter space for all tasks unable to
segregate parameters for each task. The mixing of parame-
ters leads to task interference, which in turn causes catas-
trophic forgetting. Particular PET-based methods (Wang
et al. 2022b,c; Smith et al. 2023; Gao, Cen, and Chang 2024;
Kurniawan et al. 2024) isolate task parameters by designing
task-specific prompts. However, these methods establish a
strong correlation between prompt selection and the class to-
kens. This tight coupling impedes the model from leveraging
intact old task parameters to reconstruct knowledge without
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old exemplars, undermining the model’s capacity for effec-
tive knowledge retention and reproduction in NECIL sce-
narios. Moreover, these methods, requiring multiple forward
propagations, significantly increase computational costs, as
shown in Fig.1 (b). We summarize the above issues as the
compositionality deficiency.

Second, the absence of exemplars from old tasks prevents
the model from applying replay techniques to preserve old
task knowledge. Currently, PET-based methods (Wang et al.
2022b,c; Smith et al. 2023; Gao, Cen, and Chang 2024) ne-
glect the importance of maintaining consistency between in-
crementally trained models. This neglect causes the model
to easily overfit new tasks, focusing solely on information
relevant to new tasks while discarding others that may be
critical for old tasks. It also fails to adapt classifiers to the
decision boundary changes introduced by new tasks. There
are prototype-based techniques (Zhang et al. 2023; Zhu et al.
2021b; Wang et al. 2023b) that employ the Gaussian dis-
tribution to model the distribution of old task features and
align the classifier through the generated features. However,
as shown in Fig.1 (c), the features created by Gaussian sam-
pling increasingly deviate from the actual features of real
images as new tasks are learned. We attribute the above
issues to the model alignment deficiency.

To mitigate the above two challenges, we introduce
the Dynamic Integration of task-specific Adapters (DIA)
framework, which comprises two main components: Task-
Specific Adapter Integration (TSAI) and Patch-Level Model
Alignment. Specifically, the TSAI module is designed to
boost compositionality through a patch-level adapter inte-
gration strategy, which provides a more flexible composi-
tional solution while maintaining low computation costs.
Furthermore, we demonstrate the knowledge retention and
reconstruction potential of TSAI on a parameter factor-
ization basis. Building these TSAI’s capabilities, we pro-
pose a patch-level model alignment strategy to maintain
feature consistency and accurate decision boundaries. The
proposed model alignment strategy integrates two funda-
mental parts: 1) The Patch-Level Distillation Loss (PDL)
maintains feature-level consistency between the old and new
models by introducing a distillation loss based on the nor-
malized distance of the patch tokens. PDL evaluates the con-
tribution of patch tokens to the new task learning and pe-
nalizes feature drift in non-contributory tokens to maintain
feature consistency. 2) The Patch-Level Feature Recon-
struction (PFR) employs a normalized distance difference
to retrieve patch tokens associated with previously acquired
task knowledge. These tokens, combined with old class pro-
totypes, are then used to reconstruct old class features that
adapt to the newly learned tasks.

Comprehensive experiments on four benchmark datasets
demonstrate the superiority of the proposed DIA method,
which achieves state-of-the-art (SOTA) performance in the
NECIL setting. Moreover, as shown in Fig.1 (a), our DIA
maintains up to a 90% decrease in computational complexity
while maintaining SOTA performance.

The contributions can be summarized as follows:
• We propose a novel framework entitled Dynamic Inte-

gration of task-specific Adapters (DIA) for the NECIL

problem, addressing compositionality and model align-
ment deficiencies.

• We introduce the Task-Specific Adapter Integration
(TSAI) module to boost compositionality, which em-
ploys a patch-level adapter integration strategy. We also
demonstrate its knowledge retention and reconstruction
capability through parameter factorization analysis.

• We present a patch-level model alignment strategy based
on the knowledge retention and reconstruction capability
of TSAI, incorporating PDL to maintain feature consis-
tency and PFR to reconstruct old class features that adapt
to new knowledge, improving classifier alignment.

• We conduct extensive experiments across four bench-
marks, where the proposed DIA achieves state-of-the-art
performance while maintaining an optimal balance be-
tween computational complexity and accuracy.

Related Work

Parameter-Efficient Tuning: As an efficient alternative to
full fine-tuning, Adapter tuning (Houlsby et al. 2019) was
initially introduced to efficiently transfer large pre-trained
models to downstream tasks in NLP tasks. Afterward, meth-
ods such as Prompt-Tuning (Lester, Al-Rfou, and Constant
2021) and Prefix-Tuning (Li and Liang 2021) adapt models
by inserting learnable tokens explicitly tailored to the new
tasks. Following the success of Vision Transformers (Doso-
vitskiy et al. 2020; Liu et al. 2021), PET methods have been
adapted for visual transfer learning. Notable examples in-
clude Visual Prompt Tuning (VPT) (Jia et al. 2022) and
AdapterFormer (Chen et al. 2022), which apply PET tech-
niques to vision tasks. These methods achieve comparable
or superior performance to full fine-tuning while maintain-
ing efficiency. In this paper, we propose a Dynamic Inte-
gration of task-specific Adapters framework for the NECIL
problem based on PET methods (Chen et al. 2022; Houlsby
et al. 2019).

Non-exemplar Class Incremental Learning NECIL ap-
proaches address privacy and memory concerns by elimi-
nating the need for old task exemplars and employing vari-
ous techniques such as regularization (Li and Hoiem 2018b;
Huang et al. 2024; Yu et al. 2020), augmentation (Zhu et al.
2021a,b; Kim, Park, and Han 2024), and model rectification-
based (Wang et al. 2023b; Zhu et al. 2021b) methods to
maintain model performance across tasks. Currently, PTM-
based methods that sequentially adjust the PTM to stream
data with new classes are a promising direction for NECIL.
Most methods (Wang et al. 2022c,b; Smith et al. 2023;
Gao, Cen, and Chang 2024; Roy et al. 2024) focus on the
instance-level prompt selection to segregate task parameters.
LAE (Gao et al. 2023) and ADAM (Zhou et al. 2024a) pro-
pose unified frameworks for PET methods by model ensem-
ble. SLCA (Zhang et al. 2023) extends the Gaussian mod-
eling (Zhu et al. 2021b) of old task features to rectify clas-
sifiers. EASE (Zhou et al. 2024b) utilizes adapters to ex-
tract task-specific features through multiple forward propa-
gations.



Figure 2: Illustration of DIA. (a) Task-Specific Adapter Integration. For incremental task t, we learn a task adapter At,b and
a task signature vector τ t,b ∈ Rd at each transformer block b. Each token is routed to the relevant task adapters through the
signature vectors, processed independently, and combined into an integrated, task-informed output. (b) Patch-level Distillation.
We encourage feature drift in the patch tokens that contribute to new task learning while penalizing others that do not. (c)
Patch-level Feature Reconstruction. We identify patch tokens in the patch tokens that are related to old class knowledge and
integrate them with the old class prototype µt−1

k to reconstruct old class feature µ̂t−1
k .

Problem Setup
In this paper, we focus on the NECIL setting, which pro-
hibits storing exemplars from previous tasks. NECIL in-
volves sequentially learning a set of T tasks, denoted as
{T t}Tt=1, where each task T t = {Dt, Ct} consists of a cur-
rent training set Dt = {(Iti , yti)}N

t

i=1 and a class label set
Ct = {ctk}M

t

k=1. In this context, Iti is the input image, yti is
the class label for the i-th image belonging to Ct, N t rep-
resents the number of images, and M t denotes the number
of classes in Ct. There is no overlap between the classes of
different tasks, meaning ∀i, j, Ci ∩ Cj = ∅. After train-
ing on a task T t, the model is evaluated on all the classes
encountered so far, C1:t = C1 ∪ C2 ∪ · · · ∪ Ct.

Methodology
Overview
As illustrated in Fig.2, we propose the Dynamic Integration
of task-specific Adapters (DIA) framework for the NECIL
scenario. At incremental task t, we introduce a task-specific
adapter At,b parallel to the MLP layer and a task signa-
ture vector τ t,b into each transformer block b. As shown in
Fig.2 (a), each image token is routed by the signature vectors
[τ i,b]ti=1 to relevant adapters. These task-specific adapters
independently process the input token, and their outputs are
merged using scalars determined by the task signature vec-
tors, yielding an integrated output. At task t, only At,b and
τ t,b are trainable. Leveraging TSAI’s capacity for knowl-
edge retention and reconstruction, along with the rich in-
formation embedded in patch tokens, we introduce a patch-
level model alignment mechanism at both the feature and

classifier levels. Firstly, as shown in Fig.2 (b), we compute
the Patch-Level Distillation Loss (PDL) based on the fea-
ture drift between the patch tokens pn, po obtained from the
model trained on task t and task t − 1. PDL penalizes the
feature drift in patch tokens that do not contribute to the new
task learning to preserve old task knowledge. Secondly, we
propose a Patch-level Feature Reconstruction (PFR) method
to reconstruct old class features without exemplars, as shown
in Fig.2 (c). We identify patch tokens related to old task
knowledge and integrate them with the old task prototypes.
The reconstructed features are utilized to calibrate the deci-
sion boundaries of the classifier, adapting to the changes in
feature distribution.

Task-Specific Adapters Integration
The proposed TSAI aims to provide a more flexible compo-
sitional solution by employing a patch-level adapter integra-
tion strategy. To achieve this goal, we learn a task-specific
adapter At,b and a task signature vector τ t,b ∈ Rd for each
incremental task, where d indicates feature dimension, t rep-
resents the incremental task id, and b represents the block
index. For convenience, we omit block index b, as the com-
putation is identical across transformer blocks.

Specifically, the task-specific adapter At is a bottleneck
module comprising a down-projection layer Wdown ∈ Rd×r,
an up-projection layer Wup ∈ Rr×d. This bottleneck module
extends and adjusts the feature space by modifying the MLP
output through the residual connection via a scaling vector
st obtained by τ t. For an input X =

[
pj

⊤]L
j=0

∈ R(L+1)×d

with L+1 image tokens, where p0 ∈ Rd indicates the class
token and pj ∈ Rd, j > 1 indicate the patch token. The task
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signature vector τ t assigns scalar stj to image token pj to
evaluate its task relevance:

p̃t
j = stjAt(pj) = stjReLU(pjWdown)Wup, (1)

stj =< p̄j , τ̄
t >, st =

[
stj
]L
j=0

, (2)

where, p̄j , τ̄
t represent normalized tensors p̄ = p/∥p∥2,

τ̄ t = τ t/∥τ t∥2, and < ·, · > represent the dot production.
Afterwards, the output feature oj for token pj using one

adapter At can be calculated as follows:

oj = MLP(pj) + p̃t
j + pj

= MLP(pj) + stjAt(pj) + pj . (3)

For incremental task t > 1, the output feature oj of TSAI
is integrated from multiple task-specific adapters {Ai}ti=1.
We use the softmax operation to normalize the scaling vector
[sij ]

t
i=1 for patch token pj , allowing the model to combine

the contributions from different adapters while maintaining
a balanced and stable output.

oj = MLP(pj) +
t∑

i=1

ŝijAi(pj) + pj , (4)

O =
[
o⊤
j

]L
j=0

, [ŝij ]
t
i=1 = softmax([sij ]

t
i=1), (5)

where O is the output of TSAI for input X.
Analysis of knowledge of retention and reproduction:
We conducted an in-depth analysis of the parameter space
for each task-specific adapter, using matrix factorization
to demonstrate that our proposed TSAI module can ef-
fectively preserve and reproduce knowledge from previous
tasks without needing exemplars from old tasks. In partic-
ular, we start with no activation function to describe the
knowledge retention mechanism under linear conditions and
then extend to nonlinear conditions. We provide a more de-
tailed analysis in the supplementary material.

To avoid confusion, assume the input token is p ∈ Rm

and the adapter weight is W = WdownWup ∈ Rm×n, with
a matrix rank of r. The weight matrix can be decomposed
through SVD without information loss:

W = Udiag(σ)V, W =
∑

uiσiv
⊤
i , (6)

U⊤ =
[
ui

⊤]r
i=1

∈ Rr×m,V =
[
vi

⊤]r
i=1

∈ Rr×n, (7)

where diag(σ) is a diagonal matrix with singular values σi

on the diagonal. U is an m × r orthogonal matrix, with the
singular vectors ui as its columns. V is an r× n orthogonal
matrix, with the singular vectors v⊤

i as its rows.
the output o can be formulated as:

o = A(p) = W⊤p =
∑

(uiσiv
⊤
i )

⊤p

=
∑

vi(σiu
⊤
i p) =

∑
s
′
ivi = V⊤g(p) (8)

g(p) = diag(σ)⊤U⊤p = [s
′
i]
r
i=1 ∈ Rr. (9)

From the above derivation, we can observe that each task
adapter allows the model to learn task-specific “keys” and

“values” independent of the input features. The output o
for each input token p is obtained by weighting the task
parameter space basis vectors vi through a linear function
g (·;U, diag(σ)) (a non-linear function when ReLU exists).
TSAI ensures that the output o remains within the task sub-
space, regardless of the input. We can leverage this property
by designing appropriate loss functions to maintain feature
consistency under the NECIL setting.

Patch-Level Model Alignment
Due to the limitations of NECIL methods that do not store
old class exemplars, mainstream methods do not perform
model alignment or only align the classifier.

Based on TSAI’s knowledge retention and reconstruction
ability, as well as the rich information conveyed by patch
tokens, we propose a patch-level distillation loss to main-
tain feature consistency and a patch-level old class feature
reconstruction method to align the classifier.
Patch-Level Distillation Loss: To ensure that new tasks
can share and reuse old task knowledge while maintaining
consistent feature representations for old tasks, we propose
patch-level distillation loss (PDL).

As shown in Fig.2 (b), during the training of task t, we
obtain the output features Xn and Xo for the input image
I from both the current model and the model trained on the
previous task t− 1.

Xo =
[
po
j
⊤
]L
j=0

,Xn =
[
pn
j
⊤
]L
j=0

∈ R(L+1)×d, (10)

We first compute the contribution of each patch token to
the learning of the new task based on the angular similarity:

αcos =
pn
0 · pn

j

∥pn
0∥2∥pn

j ∥2
, α∠ =

π − arccos(−αcos)

π
, (11)

here, αcos and α∠ represent the cosine similarity and angu-
lar similarity, respectively. We also conduct ablation experi-
ments on different similarity metrics in Table 5.

Secondly, we map patch tokens onto a hypersphere us-
ing L2 normalization to ensure numerical stability. Then, we
measure the feature drifts by calculating the distances be-
tween the corresponding tokens on the hypersphere, as fol-
lows:

D(pn
j ,p

o
j) = ∥p̄n

j − p̄o
j∥2. (12)

We allow greater flexibility for patch tokens that contribute
significantly to new tasks. For patches that contribute less to
new tasks, we align their tokens with the output of the old
model to maintain feature consistency with previous tasks.
Thus, the PDL loss function is defined as:

Lpdl =
1

L

∑

j

SG
[
α∠(pn

0 ,p
n
j )
]
D(pn

j ,p
o
j), (13)

where SG represents the stop gradient operation.
Patch-Level Feature Reconstruction: As new incremental
tasks are learned, the decision boundaries established from
old tasks could be dramatically changed (Zhu et al. 2021b;
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Method Params Flops ImageNet-R ImageNet-A CUB-200 Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑
FT 86M 17.58B 20.93 40.35 6.03 16.57 22.05 45.67 22.17 41.83
Adam-Ft 86M 33.72B 54.33 61.11 48.52 59.79 86.09 90.97 81.29 87.15
SLCA 86M 17.58B 77.42 82.17 60.63 70.04 84.71 90.94 91.26 94.09

LAE 0.19M 35.24B 72.39 79.07 47.18 58.15 80.97 87.22 85.33 89.96
Adam-Adapter 1.19M 36.47B 65.29 72.42 48.81 58.84 85.84 91.33 87.29 91.21
EASE 1.19M 177.11B 76.17 81.73 55.04 65.34 84.65 90.51 87.76 92.35

Adam-Prompt-shallow 0.04M 36.28B 65.79 72.97 29.29 39.14 85.28 90.89 85.04 89.49
Adam-Prompt-deep 0.28M 36.28B 72.3 78.75 53.46 64.75 86.6 91.42 83.43 89.47
L2P 0.04M 35.85B 72.34 77.36 44.04 51.24 79.62 85.76 82.84 87.31
DualPrompt 0.13M 33.72B 69.10 74.28 53.19 61.47 81.10 88.23 83.44 88.76
CODA-Prompt 0.38M 33.72B 73.30 78.47 52.08 63.92 77.23 81.90 87.13 91.75
ConvPrompt 0.17M 17.98B 77.86 81.55 — — 82.44 85.59 88.10 92.39
CPrompt 0.25M 23.62B 77.15 82.92 55.23 65.42 80.35 87.66 88.82 92.53

DIA-r08 (Ours) 0.17M 17.91B 79.03 85.61 59.78 70.43 86.73 92.13 90.80 94.29

Table 1: Experimental results on four CIL benchmarks with 10 incremental tasks. The best results are marked in bold, and the
second-best are underlined. We report the accuracy of compared methods with their source code. Params indicates the trainable
parameters in each incremental task. Flops represents the number of floating-point operations required to perform inference on
a single image.

Wang et al. 2023b). Towards this end, we propose a patch-
level feature reconstruction method to generate old class fea-
tures that adapt to the evolving model, providing better clas-
sifier alignment.

Specifically, at each incremental task t, we compute and
store a class prototype µt

k for each class k. When learning
new incremental tasks, we apply a normalized distance dif-
ference δ(k,i,j) to measure the relevance between patch to-
ken p(i,j) and prototype µt

k, where p(i,j) indicates the j-th
token of Xi within the training batch.

δ(k,i,j) =
αcos(µ

t
k,p(i,j))− αcos(p(i,0),p(i,j))

αcos(µt
k,p(i,j)) + αcos(p(i,0),p(i,j))

, (14)

δ̂(k,i,j) =

{
0, if δ(k,i,j) ≤ 0

δ(k,i,j), if δ(k,i,j) > 0
, (15)

We retrieve the patch tokens p(i,j) whose δ̂(k,i,j) > 0
and integrate them with prototype µt

k using the exponen-
tial moving average (EMA) (Morales-Brotons, Vogels, and
Hendrikx 2024) to generate old task feature µ̂t

k as follows:

µ̂t
k = β · µt

k + (1− β)
∑

i,j

ω(i,j) · p(i,j), (16)

[
ω(i,j)

]
i,j

= softmax(
[
δ̂(k,i,j)

]
i,j
),

∑

i,j

ω(i,j) = 1, (17)

where β is a hyperparameter.
In each training batch, we randomly generate old task

features through our PFR and calibrate the classifier using
the CrossEntropy loss function as previous methods (Zhang

et al. 2023; Zhu et al. 2021b). We provide a more detailed
training pipeline in the supplementary material.

Experiments
In this section, we first provide implementation details, then
present the experimental results with analyses, and finally
show ablation studies and visualization results. More de-
tailed experimental results can be found in the supplemen-
tary material.

Implementation Details

Dataset: We conduct experiments on Cifar-100 (Krizhevsky
and Hinton 2009), CUB-200 (Wah et al. 2011), ImageNet-
R (Hendrycks et al. 2021a), and ImageNet-A (Hendrycks
et al. 2021b). These datasets contain typical CIL bench-
marks and more challenging datasets with a significant
domain gap with ImageNet (i.e., the pre-trained dataset).
There are 100 classes in Cifar-100 and 200 classes in CUB,
ImageNet-R, and ImageNet-A. For all datasets, we follow
the class orders in (Zhou et al. 2024b).
Comparison methods: We compare our method with
benchmark PTM-based CIL methods in Table 1 and Table 3.
We divide them into three groups: (1) Prompt-based meth-
ods: L2P (Wang et al. 2022c), DualPrompt (Wang et al.
2022b), CODA-Prompt (Smith et al. 2023), CPrompt (Gao,
Cen, and Chang 2024), ConvPrompt (Roy et al. 2024),
Adam-Prompt (Zhou et al. 2024a). (2) Adapter-based
methods: Adam-Adapter (Zhou et al. 2024a), EASE (Zhou
et al. 2024b), LAE (Gao et al. 2023), (3) Finetuning-based
methods: SLCA (Zhang et al. 2023), Adam-Ft (Zhou et al.
2024a).
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Training details: We adopt ViT-B/16 (Dosovitskiy et al.
2020) as the pre-trained model, which is pre-trained on
ImageNet-21K (Russakovsky et al. 2015). The initial learn-
ing rate is set to 0.025 and decays with cosine annealing. We
train each task for 20 epochs with a batch size of 32 using
Nvidia 3090 GPUs with 24GB of RAM. The down projec-
tion of adapters is set to 8 in our main experiments, indicated
by DIA-r8 and the hyperparameter β is set to 0.7.
Evaluation metric: Following previous papers (Gao et al.
2023; Zhou et al. 2024b), we denote the model’s accuracy af-
ter the t-th incremental task as At and use Āt = 1

t

∑t
i=1 A

i

to represent the average accuracy over t incremental tasks.
For our evaluation, we specifically focus on two key mea-
surements: AT (the accuracy after the final(T -th) incremen-
tal task) and ĀT (the average accuracy across all T incre-
mental tasks).

Comparison with SOTA Methods
In this section, we evaluate our proposed DIA method
on the ImageNet-R, ImageNet-A, CUB-200, and Cifar-100
datasets, equally dividing the classes into 10 incremental
tasks. As shown in Table 1, our method achieves SOTA av-
erage accuracies of 85.61%, 70.43%, 92.13%, and 94.29%
on four benchmark datasets, respectively.
Prompt-based Methods: In comparison to prompt-based
approaches, the proposed DIA demonstrates comprehen-
sive improvements. When compared with the current SOTA
method CPrompt (Gao, Cen, and Chang 2024), our DIA
exhibits accuracy enhancements ranging from 1.76% to
4.99% across all datasets. Moreover, the DIA-r08 requires
fewer training parameters (merely 0.17M) and reduces the
floating-point operations (FLOPS) per image by 24.17%.
ConvPrompt (Roy et al. 2024) improves inference efficiency
by introducing large language models. Our approach, how-
ever, offers advantages in both computational efficiency and
accuracy across all datasets, notably achieving 4.06% higher
average accuracy on ImageNet-R.
Adapter-based Methods: In comparison to adapter-based
methods, our DIA still performs exceptionally well. Uti-
lizing only 14.28% of the trainable parameters needed per
incremental task, DIA-r08 outperforms EASE (Zhou et al.
2024b) and Adam (Zhou et al. 2024a) across all benchmark
datasets. Moreover, DIA-r08 only needs 17.91B Flops to in-
fer an image, reducing inference consumption by 90% com-
pared to EASE (Zhou et al. 2024b) while improving ac-
curacy. Specifically, DIA-r08 surpasses EASE (Zhou et al.
2024b) by 3.88%, 5.09%, 1.62%, and 1.94% on ImageNet-
R, ImageNet-A, CUB-200, and Cifar-100, respectively. Our
notable improvements on ImageNet-R and ImageNet-A un-
derscore that incorporating compositionality and leverag-
ing knowledge from old tasks can significantly enhance the
learning of new classes that have a domain gap with the pre-
trained data.
Ft-based Methods: Compared to finetuning-based meth-
ods, our DIA not only achieves SOTA average accuracy
across four datasets but also saves 99.80% of the training
parameters required per task compared to SLCA and Adam-

DIA PDL PFR ImageNet-R Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑
20.93 40.35 22.17 41.83

✓ 77.13 83.87 88.37 92.31
✓ ✓ 78.18 84.55 89.32 93.48
✓ ✓ 78.22 84.25 89.81 93.78
✓ ✓ ✓ 79.08 85.61 90.80 94.29

Table 2: Ablation Study on Different Components of the
DIA Framework

Method ImageNet-R Cifar-100

A20 ↑ Ā20 ↑ A20 ↑ Ā20 ↑
Adam-Ft 52.36 61.72 81.27 87.67
SLCA 74.63 79.92 90.08 93.85
Adam-Prompt-shallow 59.90 68.02 84.57 90.43
Adam-Prompt-deep 70.13 76.91 82.17 88.46
L2P 69.64 75.28 79.93 85.94
DualPrompt 66.61 72.45 81.15 87.87
CODA-Prompt 69.96 75.34 81.96 89.11
ConvPrompt 74.3 79.66 87.25 91.46
CPrompt 74.79 81.46 84.57 90.51

LAE 69.86 77.38 83.69 87.86
Adam-Adapter 57.42 64.75 85.15 90.65
EASE 65.23 77.45 85.80 91.51

DIA-r08 (Ours) 76.32 83.51 88.74 93.41

Table 3: Experimental results on four CIL benchmarks with
20 incremental tasks. The best results are marked in bold,
and the second-best are underlined.

Ft. This demonstrates that our proposed DIA strikes an ex-
cellent balance between computational efficiency and per-
formance.

Ablation Study
Component Analysis Our proposed DIA method consists
of three main components: 1) Task-Specific Adapter Inte-
gration (TSAI), 2) Patch-Level Distillation Loss (PDL), and
3) Patch-Level Feature Reconstruction (PFR). To validate
the efficacy of each component, we conduct ablation exper-
iments on two benchmark datasets: Cifar-100, which over-
laps with the pre-training data, and ImageNet-R, which ex-
hibits a domain gap from the pre-training data.

The first row in Table 2 shows the average and final accu-
racy of the pre-trained image encoder with a learnable clas-
sifier. The incorporation of the TSAI module yields perfor-
mance comparable to SOTA methods on both Cifar-100 and
ImageNet-R datasets. This indicates that the patch-level in-
tegration mechanism atop the adapter effectively reduces in-
terference between new and old tasks while enhancing new
task learning, leading to substantial performance gains. The



Method ImageNet-R Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑
DIA-Gau 78.08 83.72 89.04 93.51
DIA-SLCA 78.37 84.48 89.47 93.79
DIA-PFR 79.03 85.62 90.80 94.29

Table 4: Performance comparison with different feature re-
construction (FR) methods

(b). FR by PFR(a). FR by Gaussian Sampling

Figure 3: Visualization of different feature reconstruction
methods. We use dark colored triangle to represent actual
features and light colored circle to represent pseudo fea-
tures generated by FR (feature reconstruction) methods.

third and fourth rows highlight the importance of model
alignment in NECIL. Leveraging TSAI’s retention and re-
construction capabilities, our method gains nearly 1% im-
provement with the introduction of PDL or PFR. Finally,
the fifth row shows that combining compositionality with
model alignment achieves SOTA performance, confirming
the effectiveness of our framework.

Long Sequence Incremental Analysis: We evaluate the
performance of each method under the condition of long se-
quences. In this setting, datasets are equally divided into 20
tasks with 10 classes/tasks in ImageNet-R and 5 classes/-
tasks in Cifar-100, and the results are summarized in Ta-
ble 3. Our method still maintains excellent performance in
terms of A20 and Ā20. DIA achieves SOTA average accu-
racies of 83.51% on the ImageNet-R dataset, outperforming
the second by 2.05%. We also achieve comparable results
with SLCA on Cifar-100, using only 0.17M/86M parame-
ters.

Feature Reconstruction Analysis: We investigate the im-
pact of different old class feature reconstruction methods on
classifier alignment. As shown in Table 4, using a Gaussian
distribution to simulate old class features yields incremen-
tal accuracies of only 93.51% and 93.79% on Cifar-100. In
contrast, our proposed PFR method, which leverages TSAI’s
capability to retain old knowledge, achieves an average ac-
curacy of 94.29%. This indicates that our PFR-based old
feature reconstruction method better adapts to the changes
in old class features during the incremental process.

We also visualize the feature distributions of old classes
generated by Gaussian sampling and compare them to the
actual old class features on new tasks, as shown in Fig.3. In

Similarity Metric ImageNet-R Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑
Euclidean αeu 76.38 81.73 87.42 92.91
Cosine αcos 78.28 84.76 89.67 93.88
Angular α∠ 79.03 85.61 90.80 94.29

Table 5: Ablation Study on Similarity Metrics in Patch-
Level Distillation Loss (PDL)

the 10th incremental task, we visualize the first 10 classes.
Fig.3 (a) shows features generated using a Gaussian distribu-
tion, forming two distinct clusters with actual features, high-
lighting a noticeable disparity. In contrast, Fig.3 (b) displays
features generated by PFR, which closely align with actual
features, forming a single cohesive cluster. This confirms the
effectiveness of our proposed feature generation method and
demonstrates the DIA framework’s ability to preserve and
reproduce old knowledge.

PDL ablation: We explore different similarity metrics to
assess the contributions of patch tokens to new task learn-
ing and analyze their impact on PDL. Specifically, we in-
vestigate Euclidean distance (αeu) (Zhai et al. 2024b), co-
sine similarity (αcos), and angular similarity (α∠) as shown
in Table 5. The experimental results indicate that angular
similarity yields the best performance, achieving SOTA re-
sults across both datasets. In contrast, Euclidean distance
performs the worst, with a significant accuracy drop. We
attribute this poor performance to the numerical instability
of Euclidean distance, which is highly sensitive to varia-
tions in numerical range and more prone to outliers. Addi-
tionally, cosine similarity results in a slight performance de-
cline, which occurs because it introduces negative loss val-
ues, leading to the offsetting of losses between tokens.

Conclusion

In this paper, we propose a novel framework called Dynamic
Integration of task-specific Adapters (DIA), which con-
sists of Task-Specific Adapter Integration (TSAI) and Patch-
Level Model alignment. The TSAI module enhances compo-
sitionality through a patch-level adapter integration mecha-
nism, minimizing task interference while preserving knowl-
edge from old tasks. Patch-level model alignment maintains
feature consistency and accurate decision boundaries via a
patch-level distillation loss and a patch-level feature recon-
struction method. 1) Our PDL preserves feature-level con-
sistency between successive models by implementing a dis-
tillation loss based on the contribution of patch tokens to
new class learning. 2) Our PFR facilitates accurate classi-
fier alignment by reconstructing features from previous tasks
that adapt to new task knowledge. We evaluate DIA on four
benchmark datasets proving its efficiency and superior per-
formance.
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Methodology Supplementary
Analysis of knowledge of retention and
reproduction:
As mentioned in the main text, for an input token p ∈ Rm,
consider an adapter without an activation function, with
weights W = WdownWup ∈ Rm×n,Wdown ∈ Rm×r,Wup ∈
Rr×n, and a matrix rank of r. The weight matrix can be de-
composed using SVD as follows:

W = Udiag(σ)V, (1)

U⊤ =
[
ui

⊤]r
i=1

∈ Rr×m,V =
[
vi

⊤]r
i=1

∈ Rr×n, (2)

And the output o can be formulated as:

o = A(p) = W⊤p =
∑

s
′
ivi = V⊤g(p), (3)

g(p) = diag(σ)⊤U⊤p = [s
′
i]
r
i=1 ∈ Rr. (4)

After introducing non-linear activation function ReLU,
for each input p ∈ Rm, the output of the adapter can be
reformulated as:

A(p) = WT
upReLU(WT

downp), (5)

We perform SVD decomposition on Wup as the above Eq. 2:

Wup = Uupdiag(σup)Vup, (6)

Wup =
∑

u(i,up)σ(i,up)v
⊤
(i,up), (7)

the output o can be reformulated as:

o = A(p) = WT
upReLU(WT

downp)

=
∑

(u(i,up)σ(i,up)v
⊤
(i,up))

⊤
ReLU(WT

downp)

=
∑

v(i,up)

(
σ(i,up)u

⊤
(i,up)ReLU(WT

downp)
)

=
∑

s
′
iv(i,up) = V⊤

upg(p), (8)

g(p) = diag(σ(i,up))
⊤
U⊤

(i,up)ReLU(WT
downp) ∈ Rr. (9)

From Eq. 9, we observe that after introducing the nonlinear
activation, we obtain an expression similar to Eq. 4, with the
function g replaced by a nonlinear function.

Algorithm 1: Training Pipeline for Task t

Input: Training dataset Dt; TSAI module f(·; θb); cosine
classifier ϕ(·;Wcls)
Parameter: θb = {θptm, θo, θn}, Wcls = {W o

cls,W
n
cls}

Initialization: Initialize θn and Wn
cls. Freeze parameters

θptm and θo.
1: # Standard Training.
2: while not converged do
3: for {Iti , yti} ∈ Dt do
4: compute logits ξyt

i
= ϕ (f(Iti ; θb);W

n
cls).

5: compute CE loss LCE(ξyt
i
; s,m)

6: compute patch-level distillation loss Lpld

7: backward with objective Lobj = LCE + λLPDL.
8: end for
9: end while

10: for each class ctk ∈ Ct in task t, we compute its class
prototype µt

k and store in memory.
11: # Classifier alignment.
12: while not converged do
13: for Training batch within Dt do
14: Sample N class prototypes {µci}Ni=1, ci ∈ C1:t.
15: Construct class feature µ̂i,c using PFR method with

the training batch.
16: Fine-tune the classifier ϕ(·;W o

cls,W
n
cls) .

17: end for
18: end while

Training Pipeline
The training pipeline for the proposed DIA method follows
previous approaches (???) and is composed of two stages:
standard training and classifier alignment for each task t, as
illustrated in Algorithm.1.

For incremental task t, the TSAI module is parameterized
by θb = {θptm, θo, θn}, where θptm denotes the parameters
of the pre-trained model (PTM), θo refers to the parameters
of the adapters and signature vectors for old tasks, and θn

corresponds to the parameters for the new task t. The cosine
classifier ϕ(·;Wcls) comprises two parts: the old class clas-
sifier ϕo(·;W o

cls) and the new class classifier ϕn(·;Wn
cls).

Standard Training: During standard training, for each im-
age {Iti , yti} ∈ Dt, where yti ∈ ctk ∈ Ct, we first extract
features f(Iti ; θb) using TSAI module f(·; θb), then compute
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Method Cifar-100

A10 ↑ Ā10 ↑ A20 ↑ Ā20 ↑
CLIP-MoE 77.52 85.21 76.20 83.72
DIA-r08 90.80 94.28 88.74 93.41

Table 1: Comparision with CLIP-MoE on Cifar-100 dataset.
The best results are marked in bold.

Figure 1: Ablation experiments on hyperparameter λ

the output logits

ξyt
i
= ϕn

(
f(Iti ; θb);W

n
cls

)
, (10)

with the cosine classifier of new task ϕn(·;Wn
cls). We opti-

mize the classification results using a variant of the CE loss
LCE and ensure feature consistency with patch-level distil-
lation loss (PDL) Lpdl.

Following methods (??), we define LCE as:

LCE(ξyt
i
; s,m) = −log

e
s(ξyt

i
−m)

e
s(ξyt

i
−m)

+
∑Ct−cti

c es(ξc)
(11)

Here, s is a scaling factor that adjusts the magnitude of
cosine similarity, ensuring that the Softmax function pro-
duces a more discriminative probability distribution. m in-
troduces an additional angular separation between classes.
When s = 0 and m = 0, LCE(·; 0, 0) reduces to the stan-
dard cross-entropy loss function. When s ̸= 0 and m = 0,
LCE(·; s, 0) adopts a common format used in cosine classi-
fiers, adjusting the scale of cosine similarity via s.

The loss function during training is defined as:

Lobj = LCE + λLpdl, (12)

where, λ is a hyperparameter that controls the strength of the
regularization.
Classifier Alignment: To further refine the classification
layer, we perform classifier alignment after the standard
training stage, following methods (??) (see Algorithm 1).
Specifically, during the standard training phase, only the
classifiers corresponding to the current task’s classes are
trained alongside the TSAI module. Once standard train-
ing is completed, we compute the class prototype µt

k =
1
Nt

k

∑Nt
k

i f(Iti ; θb) for each class ctk ∈ Ct in the current task,
where N t

k denotes the number of images for class ctk.

(a) Ablation experiments on hyperparameter 

(b) Ablation experiments on hyperparameter 

Figure 2: Ablation experiments on the hyperparameters β
and m using the CIFAR-100 dataset.

During the classifier alignment stage for task t, we ran-
domly select N (Set to 32 in our implementation) class
prototypes {µci}Ni=1, ci ∈ C1:t in each training batch and
generate pseudo-features {µ̂ci}Ni=1 using the PFR method.
These pseudo-features, combined with training samples, are
used as inputs to the classifier ϕ(·;W o

cls,W
n
cls), which is

then fine-tuned using LCE(·; 0, 0).

Supplementary Experiments
This section provides additional experiments, including
comparisons with CLIP-MoE (?), hyperparameter ablation
studies, and model structure ablation studies.

Supplementary Implementation Details
In our implementation, we set the margin m to 0.1, the hy-
perparameter λ, which balances LCE and Lpdl, to 0.1, and
the parameter β, which balances feature construction, to 0.7.

Comparative Experiments
We conduct comparative experiments with the latest
CVPR24 method, CLIP-MoE (?). However, since CLIP-
MoE did not perform experiments on ImageNet-R,
ImageNet-A, or CUB-200, we focus our comparison on
CIFAR-100. As shown in Table 1, despite CLIP-MoE (?)
utilizing a more powerful CLIP backbone and additional se-
mantic information, our method outperforms CLIP-MoE by
a significant margin.

Hyperparameter Ablation
We conduct hyperparameter ablation studies in this section.
Fig.1 and Fig.2 present the experimental results for the hy-
perparameters β, m, and λ. Based on these results, we se-
lected the optimal hyperparameter combination of β = 0.7,
m = 0.1, and λ = 0.1.



Method Params Flops ImageNet-R ImageNet-A CUB-200 Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑
DIA-r08 0.17M 17.91B 79.03 85.61 59.78 70.43 86.73 92.13 90.8 94.28
DIA-r16 0.31M 18.18B 79.82 86.04 57.74 69.84 86.01 91.84 90.38 94.15
DIA-r64 1.19M 19.20B 79.10 85.62 59.91 70.90 87.19 92.26 90.56 94.51

Table 2: Ablation experiments on the adapter rank with 10 incremental tasks.

Method Params Flops ImageNet-R ImageNet-A CUB-200 Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑
DIA-r08 0.17M 17.91B 79.03 85.61 59.78 70.43 86.73 92.13 90.8 94.28
DIA-r16 0.31M 18.18B 79.82 86.04 57.74 69.84 86.01 91.84 90.38 94.15
DIA-r64 1.19M 19.20B 79.10 85.62 59.91 70.90 87.19 92.26 90.56 94.51

Table 3: Ablation experiments on the adapter rank with 10 incremental tasks.

Method Params Flops ImageNet-R ImageNet-A CUB-200 Cifar-100

A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑ A10 ↑ Ā10 ↑
DIA-MLP 0.17M 17.91B 79.03 85.61 59.78 70.43 86.73 92.13 90.80 94.28
DIA-MHSA 0.51M 18.56B 78.50 85.05 57.27 69.12 83.29 90.56 90.33 94.17
DIA-MIX 0.69M 18.9B 79.69 85.41 58.21 69.93 85.68 92.38 90.85 94.30

Table 4: Ablation experiments on the adapter structure with 10 incremental tasks.

Adapter Rank Ablation
We evaluate the model’s accuracy across four datasets by
varying the adapter down-projection dimensions to 8, 16,
and 64. The results show that increasing the number of
parameters does not lead to significant accuracy improve-
ments, with the r64 configuration yielding less than a one-
point gain over r08. This demonstrates that the importance
of model architecture and training strategies outweighs that
of merely increasing the number of parameters.

Structure Ablation
We explore the impact of inserting the TSAI module in
parallel within both the MHSA and MLP structures of the
transformer block. Specifically, we integrate TSAI in par-
allel with the three QKV projection layers of MHSA. As
shown in Table 4, despite tripling the number of trainable pa-
rameters per task, DIA-MHSA still slightly underperforms
compared to DIA-MLP. We attribute this to the multi-head
attention mechanism’s role in capturing input sequence de-
pendencies, where its complex structure may be disrupted
by the addition of adapters, thereby increasing optimization
difficulty. The experimental results further validate the ratio-
nality of our current model structure.


